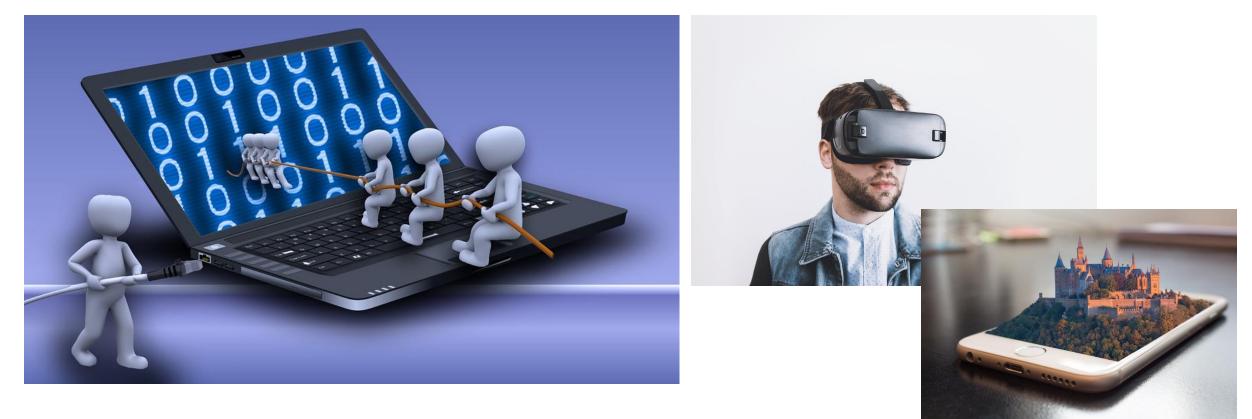


Design of Diffractive Optical Elements for Augmented/Virtual Reality Applications

Simulation and Design Using RSoft Tools



- Introduction
- Synopsys Solutions for AR/VR
- Design Case 1 Diffractive Slanted Grating
- Design Case 2 DOE on planar waveguides
- Conclusion

Virtual Reality (VR)

• VR embeds our senses with a 3D, computer generated environment

• This environment can be interacted with and explored

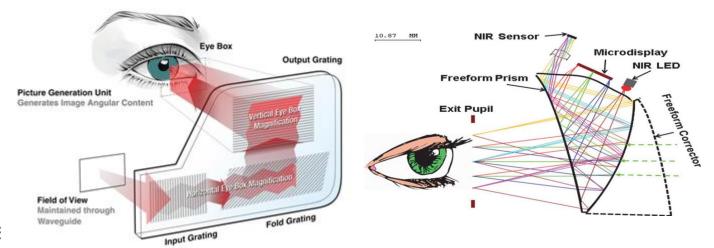
Augmented Reality (AR)

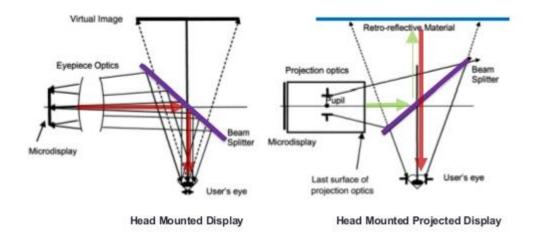
- AR enhances your existing natural environment by overlaying virtual information on top of it
- Both worlds harmoniously exist, providing users a new and (hopefully!) improved natural world where virtual information can provide assistance to everyday tasks

Estimated VR/AR Market

VR AND AR MARKET FORECAST ACCORDING TO GOLDMAN SACHS \$90.0 \$80.0 \$70.0 \$60.0 Revenue (\$bns) \$20.0 \$40.0 \$30.0 \$20.0 \$10.0 \$0.0 2019E 2017E 2021E 2022E 2023E 2024E 2025E 2016E 2018E 2020E Software revenue Hardware revenue

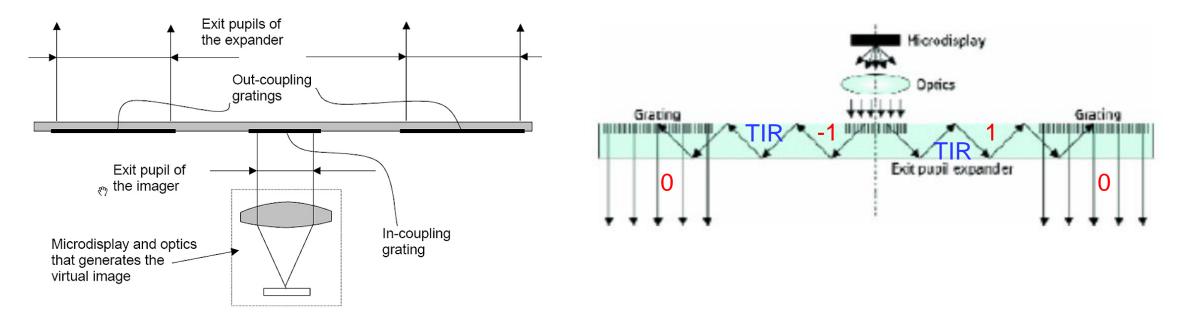
• VR and AR has potential to revolutionize many aspects of human life, and is projected to have extremely strong growth


Optics is Key for VR/AR


- "Optics remains the key challenge in developing the ultimate virtual experience" Bernard Kress, Microsoft's Hololens Division @ SPIE Photonics West 2018:
- New types of optical and photonics technologies need to be implemented in next-generation VR/AR systems in order to achieve a better sense of display immersion for the user, and provide greater visual comfort for prolonged usage

AR/VR Requirements

- Main VR/AR requirements:
 - Low weight
 - Small Size
 - Insensitive to vibration
 - Comfortable
- Types of existing systems include:
 - Freeform optical prism projection system:
 - Retina scanning
 - Reflective systems or hybrid reflective/refractive systems
 - Optical planar waveguides with diffraction gratings
 - This system has potential to meet AR/VR design requirements
 - Synopsys tools can be used for the design process!



Basic Schematic of Optical Waveguide System

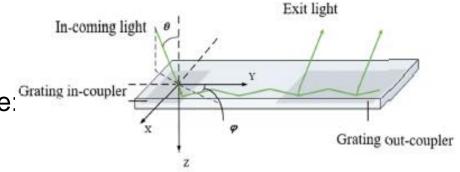
Near-Eye-Display (NED) Systems

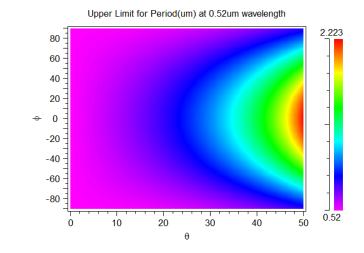
- Functions of the Diffractive Gratings:
 - -Couple light into waveguide plate and couple light out of plate into eyes
 - -Wavelength selection
 - -Wavefront reshaping
- Gratings must be designed properly so that the optical system produces good images

Analyzing Gratings using Diffraction Theory

• k vector of incoming light:

$$k_i = \frac{2\pi}{\lambda} n_0 \left(\sin \theta_0 \cos \varphi_0, \sin \theta_0 \sin \varphi_0, \cos \theta_0 \right),$$

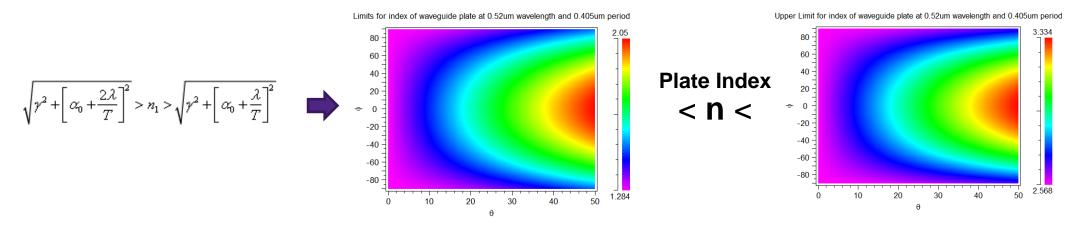

• k vector of $A = m^{th}$ diffraction order inside the waveguide: Grating in-coupler


 $k_{m} = \frac{2\pi}{\lambda} n_{1} \left(\sin \theta'_{m} \cos \varphi'_{m}, \sin \theta'_{m} \sin \varphi'_{m}, \cos \theta'_{m} \right),$

• From the grating equations in conical geometry:

$$n_{1}\sin\theta'_{m}\sin\varphi'_{m} = n_{0}\sin\theta_{0}\sin\varphi_{0} = \gamma$$
$$n_{1}\sin\theta'_{m}\cos\varphi'_{m} = n_{0}\sin\theta_{0}\cos\varphi_{0} + m\frac{\lambda}{T} = \alpha_{0} + m\frac{\lambda}{T}$$

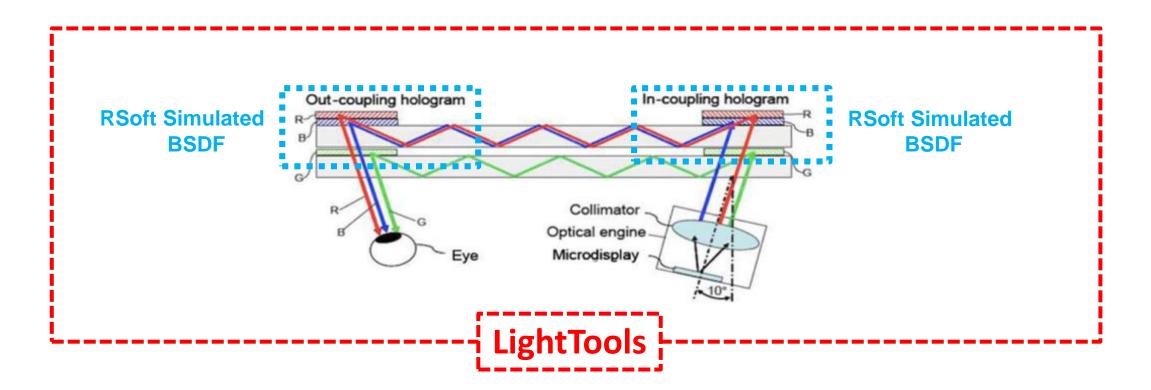
 Assuming the 1st order must TIR in the waveguide, the largest period that we can use is given by:



 $T < \frac{\lambda}{\sqrt{1 - \gamma^2} - \alpha_0}$

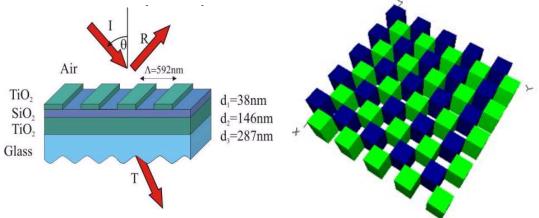
Analyzing Gratings using Diffraction Theory

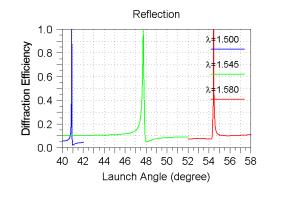
• Furthermore, consider the requirement that there are no orders higher than the +/-1 order, the waveguide indexes are bounded by:

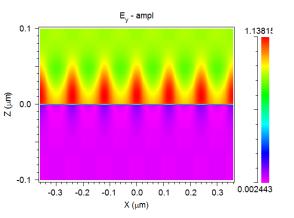


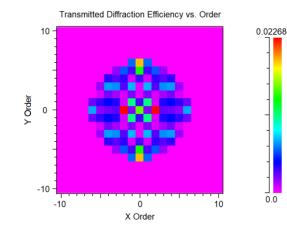
- This simplistic approach is not enough, the actual grating geometry must be optimized to achieve a realistic grating that works in real operating conditions. This includes:
 - Period
 - Diffraction Angle of each order
 - Diffraction efficiency of each order
 - Grating materials and geometry
 - Others…

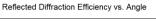
Synopsys Solutions for AR/VR

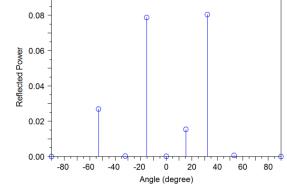

Synopsys's Solution for AR/VR Optical System Design

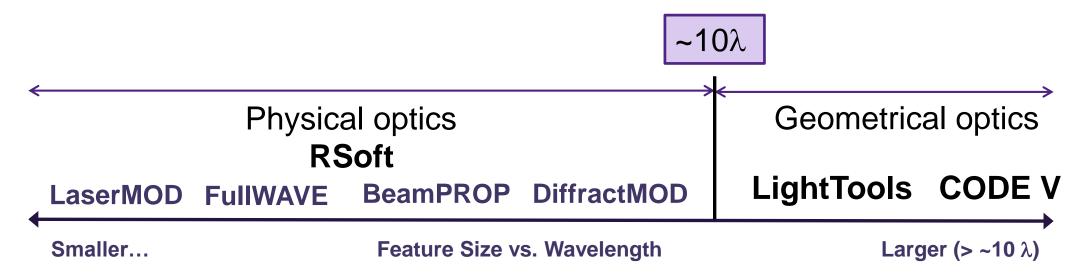

- Optical System: Synopsys LightTools
- Grating Design: Synopsys RSoft
 - -RSoft CAD / DiffractMOD / FullWAVE / MOST Optimizer




DiffractMOD: RSoft's RCWA tool

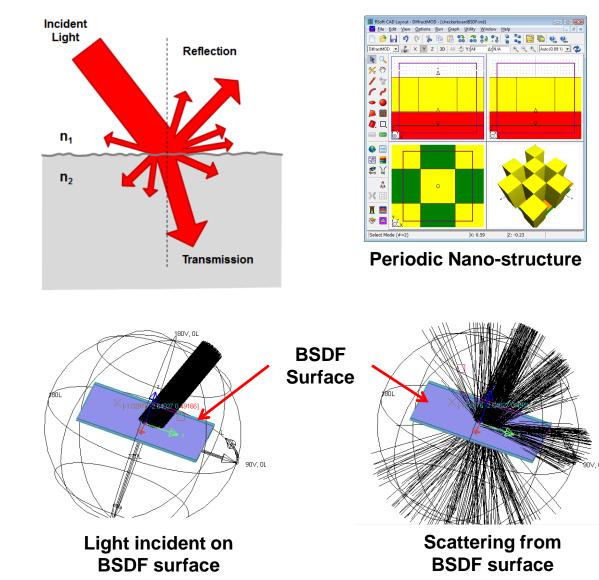

- DiffractMOD is a very efficient tool to rigorously calculate diffraction properties of transversely periodic devices
- DiffractMOD outputs :
 - -Reflection/Transmission power for each diffraction order
 - Total reflection/transmission
 - -Amplitude/Phase/Angle for each diffraction order
 - Field distribution in simulation domain



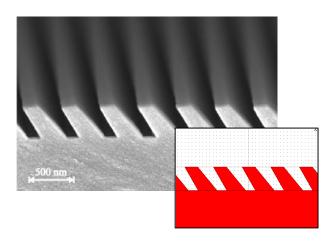

RSoft and LightTools Co-Simulation

RSoft Component Tools

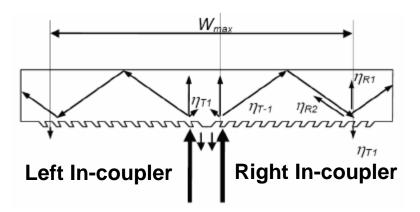
- -Based on physical optics
- -Maxwell's equations, etc
- Small photonics devices
- -Wave propagation and multi-physics
- Diffraction, polarization, nonlinearity, electrooptical, thermo-optics, etc.


LightTools

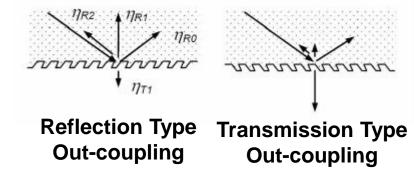
- -Based on geometrical optics
- Snell's law, etc.
- -Large bulk optical system
- -Ray tracing and beam propagation
- -Reflection, refraction, diffraction


RSoft/LightTools BSDF Interface

- RSoft BSDF files:
 - Automatically calculated using RSoft's FullWAVE or DiffractMOD packages
 - Contains information about how a surface (thin film, patterns, etc.) scatters light
 - Reflection/transmission data is stored for illumination from both sides of the surface
 - Scatter information is stored as a function of two incident angles, wavelength, and polarization
- The RSoft BSDF file is then used in LightTools to define a surface property
 - Rays that hit the surface in LightTools are 'diffracted' according to the data in the RSoft BSDF file

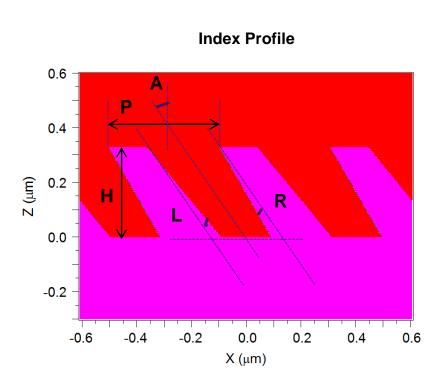


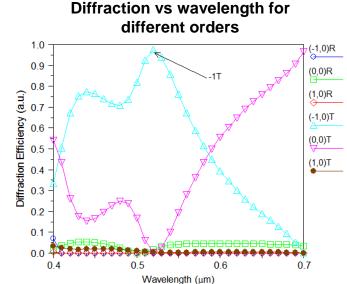
Design Case 1 – Diffractive Slanted Grating


Design Case 1: Structure Overview

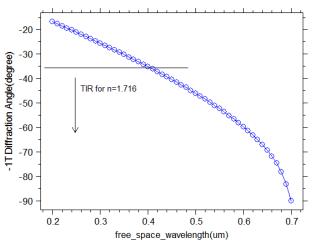
Diffractive slanted gratings are manufactured onto a high refractive index plastic waveguide with simple UV replication technology. Large quantity manufacturing is possible.

The slanted gratings can be optimized to have high 1st order transmission efficient for right incoupling and high -1st order transmission efficient for left incoupling (> 92%).

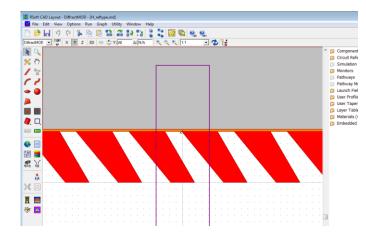


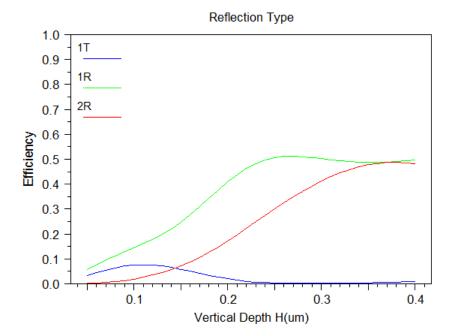

• Two types of slanted gratings for out-coupler. The efficiency can be optimized as well.

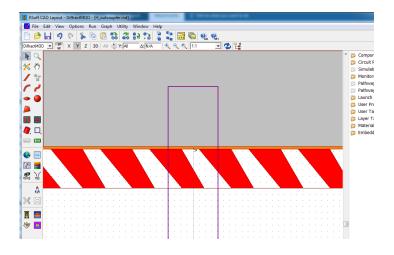
T Levola et al, "Replicated slanted gratings with a high refractive index material for in and outcoupling of light", Optics Express, 15 (2007)


Using DiffractMOD for Grating Design

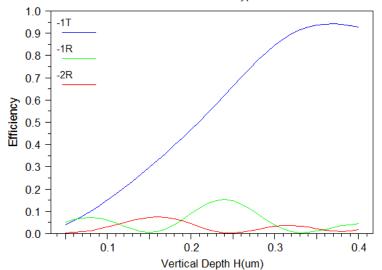
- Grating Properties:
 - -Wavelength: 0.52 µm
 - -**Period:** 0.405 μ m
 - -H: grating height
 - -A: slant angle
 - Left slope angle from slant axis
 - R: right slope angle from slant axis
 - -Fill: duty ratio
 - -Index: 1.716

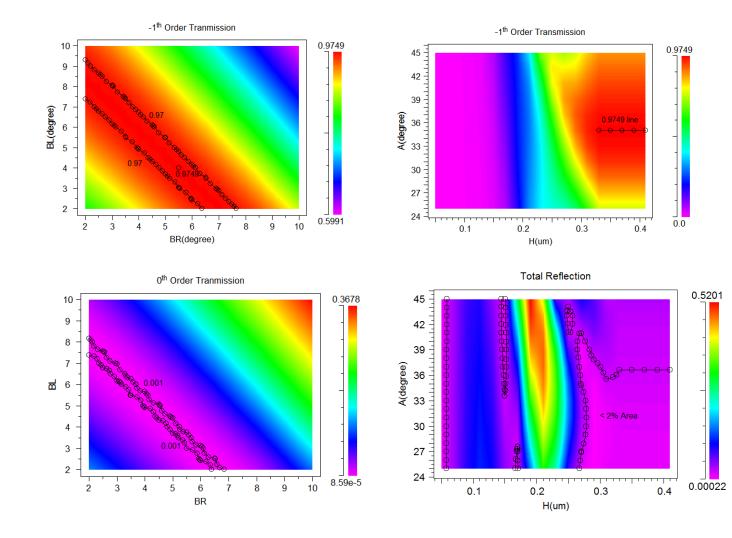



Diffraction angle of -1T vs wavelength



Simulation Results

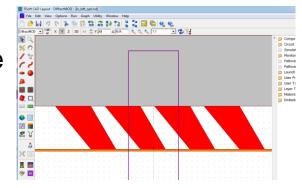

Reflection vs. Transmission Type Gratings


Transmission Type

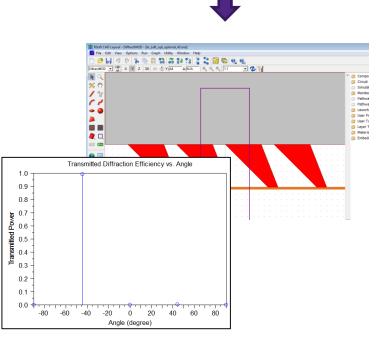
Exploring Parameter Space with MOST Scanner

- RSoft MOST scanner is a very powerful tool to investigate structure parameters
- In this case, maximum power in the +1 (right in-coupler) and -1 (left in-coupler) are desired

Windo C C	an Default (DiffractMOD) timize User sim:		Cluster Option Processes: threads/proc ask group siz	stering 10 c: 1 ce: 0		put Prefix: sttmp Symbols dvanced eferences	ve settings est metric Help	OK Cancel Resume Post-proces	
Ind	ependent variables (scan) - the o Low: 0.25	uantities to	vary Type	Low	High	Incr.	Steps	Function	Meta ^
		N	Fixed inc		1.4	0.02	61	. anotion	
	Н	N	Fixed inc	0.05	0.4	0.02	19		
		N	Fixed ste	25	45	2	11		
	A	N N	Fixed ste Fixed inc		45 0.6	2 0.01	11 16		
	A	N		0.45		-			
	A Lambda free_space_wavelengt	N	Fixed inc	0.45 0.45	0.6	0.01	16		
	A Lambda free_space_wavelength P	N N	Fixed inc Fixed inc	0.45 0.45 0.38	0.6 0.6	0.01 0.01	16 16		
	A Lambda free_space_wavelengt P BR	N N N	Fixed inc Fixed inc Fixed inc	0.45 0.45 0.38 2	0.6 0.6 0.42	0.01 0.01 0.001	16 16 41		

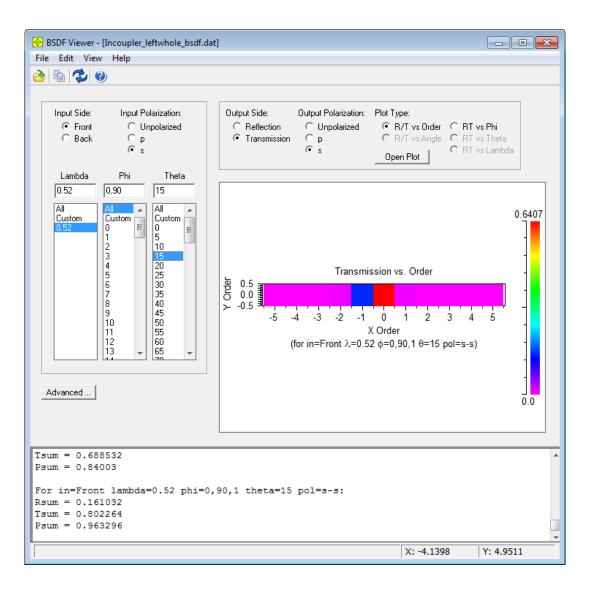

Finding Optimal Structure with MOST Optimizer

• MOST Optimizer uses a genetic algorithm to explore the parameter space


- A Python function was used to maximize the power in the -1 order
- The geometry for the starting point and final optimal point are shown

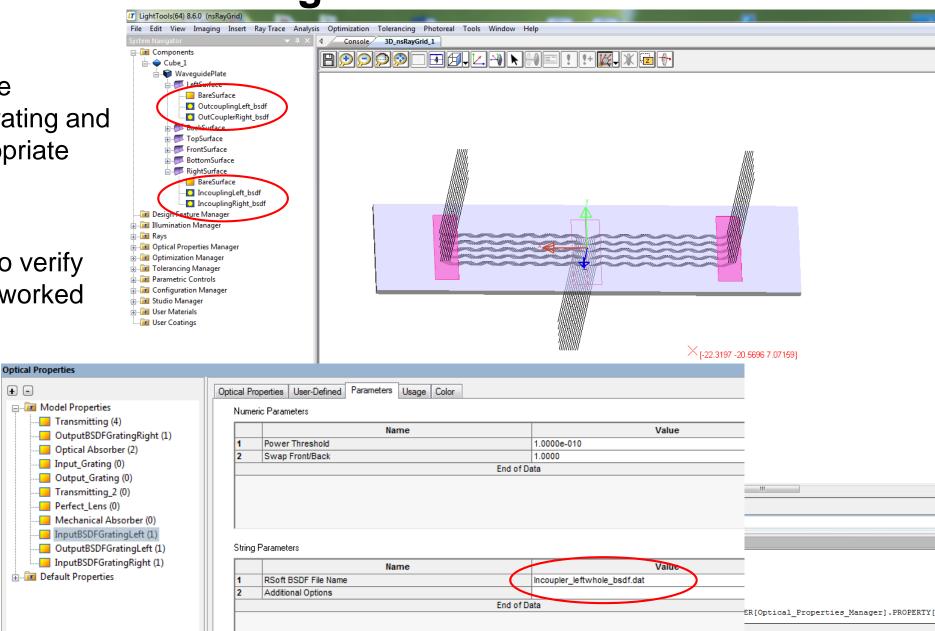
efault (DiffractMOD) 丈 eer sim: Verbosity: C Low C Medium C High dep. vars Measure ariables (optimization) - the P Variable Ac	ements Metrics	2 Sy 1 Ad	ttmp ymbols vanced ferences Init. val 1:	Save settings Test metric Help Init. val 2:	OK Cancel Resume Post-process
er sim: Verbosily: C Low C Medium C High dep. vars Measure ariables (optimization) - the P Variable Ac Y	# threads/proc: Task group size: Skip master Skip master e quantities to vary	Max. value	ferences	Help	Resume Post-process
C Low Medium Medium High dep. vars Measure ariables (optimization) - the P Variable Y	Task group size:	Settings	ferences		Post-process
C Medium C High dep. vars Measure ariables (optimization) - the P Variable Ac	e quantities to vary	Max. value		Init. val 2:	
ariables (optimization) - the P Variable Ac	e quantities to vary		lnit. val 1:	lnit. val 2:	lnit. val 3:
Y			lnit. val 1:	lnit. val 2:	lnit. val 3:
	0	10			
0		10			
1	0	10			
Y	0.3	0.5			
Y	0.1	0.4			
Y	0.35	0.45			
iilable symbols:	.				4
	Y	Y 0.1 Y 0.35	Y 0.1 0.4 Y 0.35 0.45 ilable symbols:	Y 0.1 0.4 Y 0.35 0.45	Y 0.1 0.4 Y 0.35 0.45 Iable symbols:

	Target Function (Python)
def dm_i	met(measurements, symtab, extras): '''Python Function for metric''' print ('\nRunning Metric:')
	<pre>#Read R/T order measurements #r_orders= measurements['r_orders'].data() t_orders= measurements['t_orders'].data()</pre>
	#print r_orders #print t_orders
	#Metric: err0= abs(1 - get_de(t_orders,-1,0))
	ans= err0
	print 'Err0:',err0
	print 'Returning: ',ans
	return ans
#USEFUL	<pre>####################################</pre>

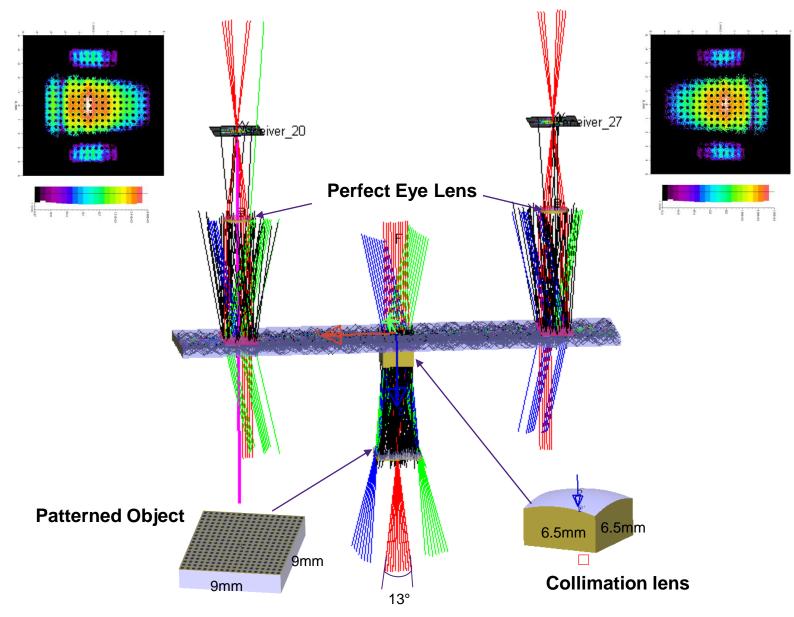

Optimizer finds a structure that meets the target function

RSoft BSDF Calculation for Optimal Structure

- Angular range of RSoft BSDF file:
 - **Phi** (from normal): Range of [0,90] with 1° spacing
 - Theta (around normal): Range of [0,360] since the structure is anisotropic with 5° spacing
- BSDF Utility runs DiffractMOD simulations and both polarizations are automatically calculated


BSDF Generation U	tilty		×
- Scan Parameters-	Min	Max	Step Size
Wavelength:	default	default	default
Phi:	0	90	1
Theta:	0	360	5
Sim Windows	Cluster Options # Processes:	10	Output Prefix: dftmp
 Minimize Hide 	# Threads/Proc: Auto Threads	2 Settings	Save Settings
Help	Symbols	Advanced	OK Cancel
	_		

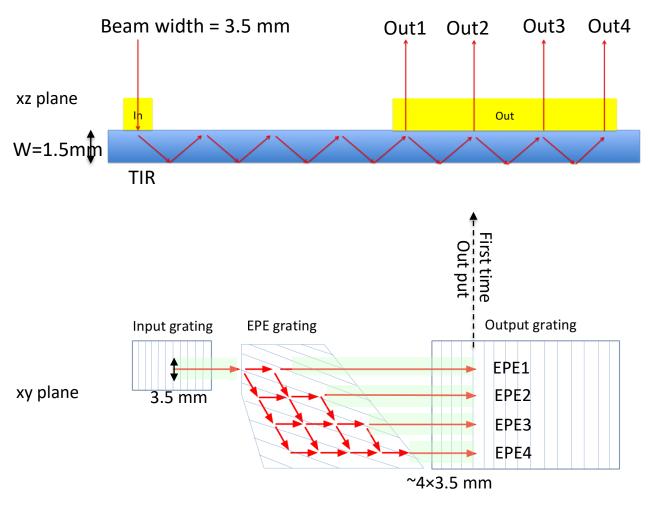
Using RSoft BSDF files in LightTools


- RSoft BSDF files were calculated for each grating and assigned to the appropriate LightTools surface
- Test rays were used to verify that the basic design worked

+ -

LightTools/RSoft Co-Simulation Results

- A patterned hole array was used as a test image; the hole array image is clearly seen at both eyes
- The incident source has an angular spread of 13° while the grating was designed for collimated input
- The angular sensitivity of the grating can be explored to improve the uniformity of the device
- Possible improvements include:
 - Combined optimization of diffraction gratings
 - Free form optical systems



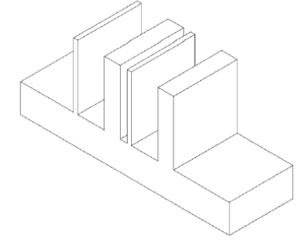
Design Case 2 – DOE on planar waveguides

By: Tung Yu Su, Cybernet System Taiwan

Design Case 2: Structure Overview

- Three grating groups will be included in this VR/AR system:
 - Input Grating: Used to couple light into a substrate, diffracting light at an angle and making light propagate in the substrate by total reflection
 - Diffractive Exit Pupil Expander (EPE) Grating: Used to expand the light
 - Output Grating: Used to couple out the light from a substrate into air, guiding the light into other optics in the system

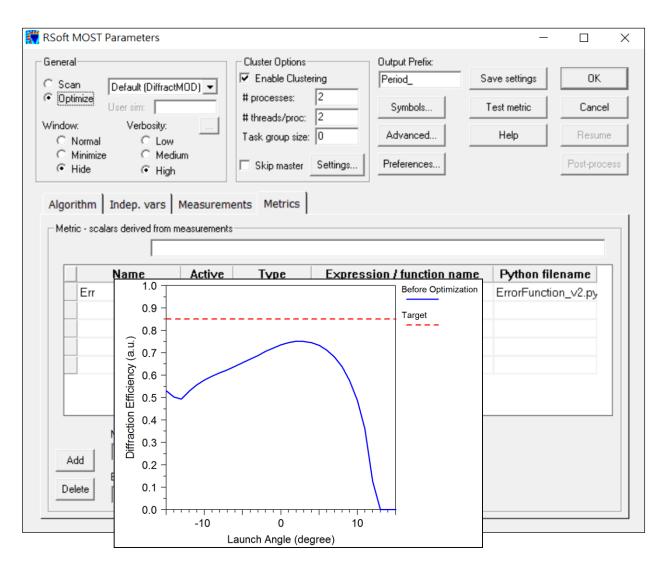
Tapani et al, "Diffractive optics for virtual reality displays", Journal of the SID 8 (2006)


Diffractive Exit Pupil Expander (EPE)

- The size of the waveguide structure can be minimized using a simple virtual image generator having a small exit pupil and an exit pupil expander (EPE)
- Here, we use an even number of first-order diffractions, which contains a input grating, a
 output grating, and a diffractive EPE to expand a single input beam to a 4 x 4 beam array in a
 very thin optical waveguide

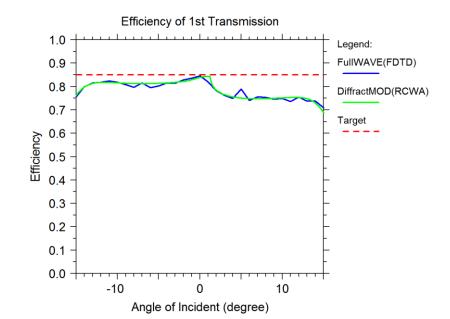
Drawing the Input Grating in the RSoft CAD

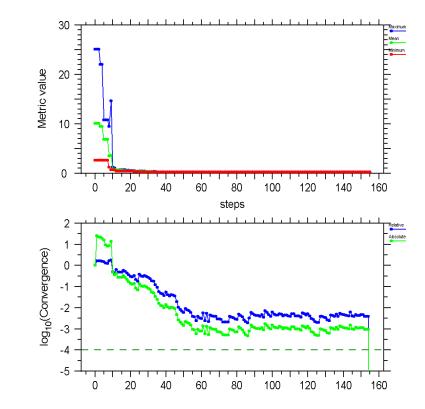
• The prototype for the input grating is a 'line grating' since a single etch process can be used since the height of every fin is the same



- Requirements for input grating:
 - Transmitted diffractive angle must be larger than the total reflection angle (TIR)
 - Transmission should be more than 70% for the incident angle range $\pm 15^{\circ}$
- Structural Parameters:
 - Period (fixed to meet requirement of output diffractive angle)
 - Width
 - Height
 - Filling Factor
 - Index/Material

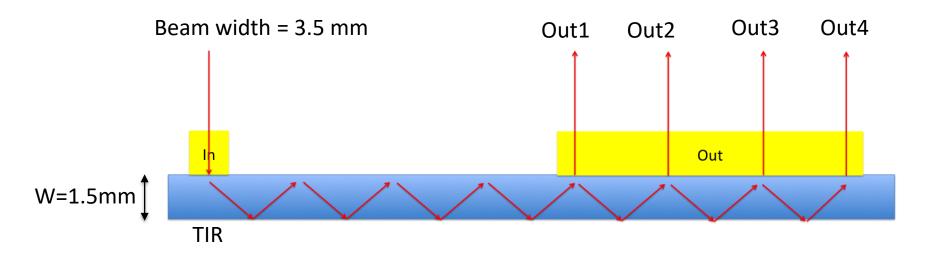
2	File	Edit	Vie	w	0	ptio	ns	Ru	n (Gra	ph	Util	ity	Wi	ndo	v F	lel	p														- 8
	2	Ы	9		3	2	0	b	G		1	2		5	• • 0				5	1	r.)	2)									
Diffra	ctMOD	-	1P 4P	: '	×	Y	Ζ	30		al :	* ,	Y: AI			: N//		0		2	e,	1:1	_	Ŧ	17	12	1						
	0																			+								^	P	Components	(7)	
%	Ð																													Circuit Refere		
72													Г			V				Ť								-		Simulation R	egions	
/	1																			I.										Monitors (1)		
1	1																													athways		
•	-												÷							ŀ										athway Mor aunch Field:		
•	•								• •				÷							ł					• •					Jser Profiles	5(1)	
							1						1								1									Jser Tapers		
2										-1											1									ayer Tables		
-																														/ Aaterials (4)		
٩,	D,						ł.																							mbedded C		
(Az)	EH						ŀ.						·	Ŀ															1			
						1							1	Ľ							1				1							
٩										-1																						
R	_																															
_																												•				
f(evz)	1(2)	1																														
		1																														
	4																															
X																																
_	_																															
H	-	1																														
≽																																
~	-	1																														
		÷.,																														
		Z' ⊗`,>																														
		(⊘_) <																										~				

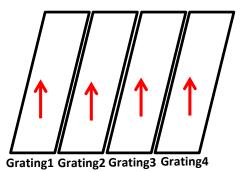

MOST Optimization


- Before performing a successful optimization, a suitable error function should be clearly defined:
 - The target of this optimization is the 'uniformity' of transmitted power
 - The blue line (uniformity before optimization) should move towards the red line (target)
- A Simplex algorithm was chosen for this optimization study

Optimization of Input Grating

- Optimization details:
 - 150 steps (1583 simulations) were performed to find a converged result
 - 31 models were automatically saved during optimization; users are able to check the performance of every model
- Result shows increased transmitted power across ±15° incident angular range, >70%



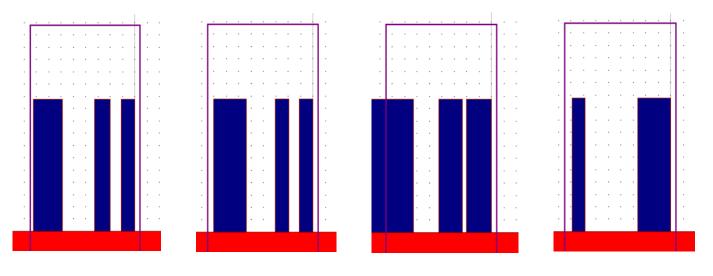


Output Grating

- The output powers of "Out1", "Out2", "Out3" and "Out4" should be close to each other, keeping a good output power uniformity
- To achieve this target, a single grating is not sufficient: the Output area is divided into four areas
 - Each area has a different grating
 - -Output power(s) can be properly designed

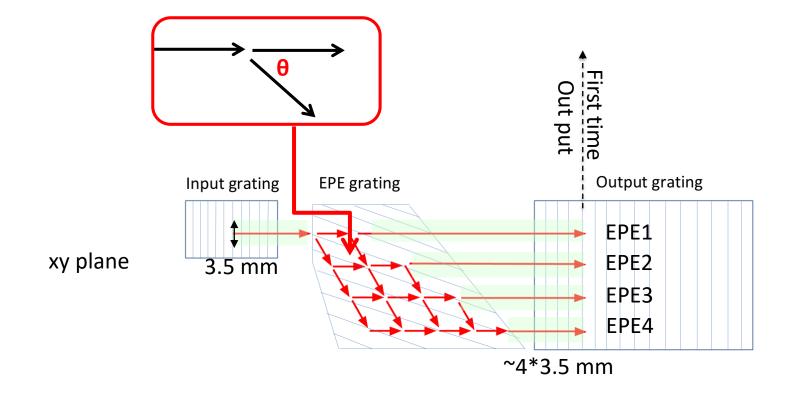
Output Gratings

	Grating1	Grating2	Grating3	Grating4
Input Power	1	, 0.75	0.5025	, 0.25025
Diffraction Efficiency	25%	33%	, 49.8%	/ 99%
Output Power for -1 st	0.25	0.2475	0.25	0.25
Power to the next area	0.75	0.5025 ′	0.25025	0

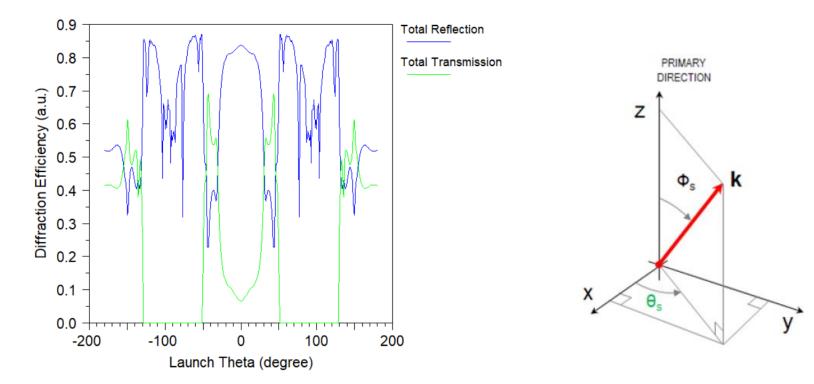

- Goal: 25% of power output in each area which means that the -1st order must have different output power for each grating
- Here we fix these parameters of the four gratings:
 - Height (so only one mask is needed)
 - Material
 - Period
- Multi-variable optimization is needed again!

Optimizations of Output Gratings

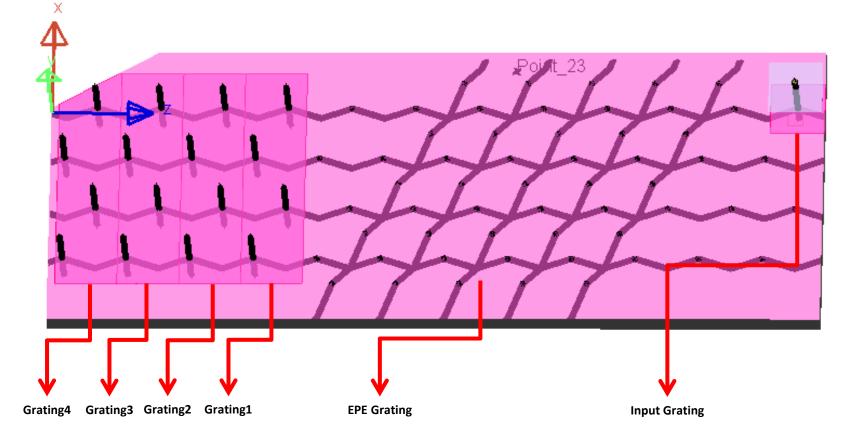
• Error functions are easy to define in RSoft's MOST:


Algor	rithm Indep. vars	Measurem	ents Metrics		
Met	ric - scalars derived from	n measurements	;		
	Expression: ((0.)	75-dm_de_r_0_	single)^2+(0.25-dm	_de_t_1_single)^2)	
	Name	Active	Туре	Expression / function name	Pytho
	Err	Y	Expression	((0.75-dm_de_r_0_single)^2+(0.25-	

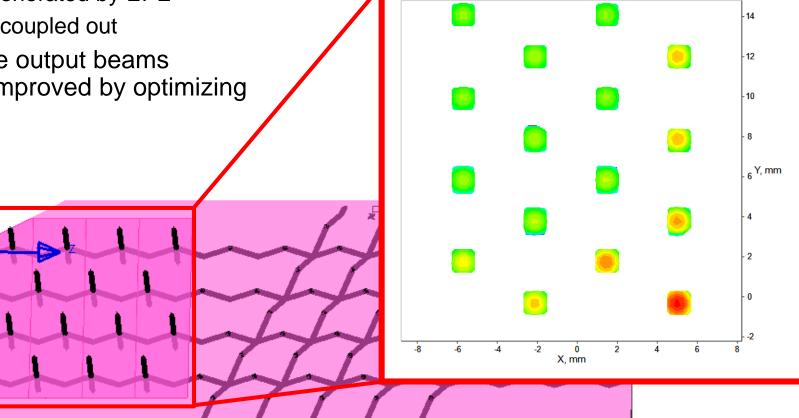
• Optimized models can be checked after optimization, geometry is shown here:


Gratings for EPE

- The design of the EPE includes the second incident angle (theta)
- The grating was designed to split the light as shown below


Gratings for EPE

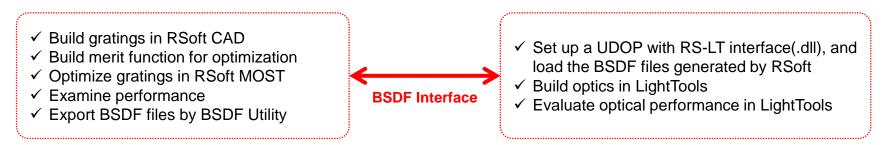
- RSoft's DiffractMOD, a 3D full-vector RCWA-based simulator, allows users to freely change the incident conditions such as angle, polarization, or phase
 - For a fixed launch angle(φ =53.9°), a theta scan can be performed to find optimal transmission/reflection:


Optical System in LightTools

- RSoft BSDF files for each grating were used to define the surface properties of the appropriate area in LightTools:
 - -Users are able to rotate the axes of optical properties to achieve the tilted grating profile

Optical System in LightTools

- Data in the output plane shows 16 beams after propagating through the input grating, EPE grating and four output gratings
 - One beam is coupled into substrate
 - -4 beams are generated by EPE
 - 16 beams are coupled out
- Uniformity of the output beams can be further improved by optimizing the EPE grating



Conclusion

• Synopsys provides a complete set of tools to study AR/VR devices

• Workflow:

- RSoft (grating design and optimization) \rightarrow BSDF interface \rightarrow LightTools (optics systems design)

Design and Optimization of Gratings:

- Gratings can be optimized based on diffraction angle, efficiencies, etc. of any order or combination of orders
- MOST Optimization in RSoft CAD provides a convenient method to optimize gratings with either FullWAVE or DiffractMOD
- Data Processing:
 - No extra work to use RSoft BSDF data in Synopsys' LightTools
 - All diffractive properties are included in the RSoft BSDF files, including R/T, dispersion, polarization, etc
- Manufacture:
 - Users are able to export layout files from RSoft directly, and manufacture gratings in a suitable process